

Stantec Consulting Services Inc. 300 Crown Colony Drive Suite 110, Quincy MA 02169-0982

January 4, 2024 File: 195601998

Massachusetts Department of Environmental protection Division of Solid Waste 20 Riverside Dr. Lakeville, MA 02347

Re: Semi-Annual Monitoring Report

Former Sylvester Ray Landfill Marshfield, Massachusetts Stantec Project No. 195601998

On behalf of Luminace by Brookfield Renewable, Stantec Consulting Services Inc. has prepared this *Semi-Annual Monitoring Report* for the former Sylvester Ray Construction & Demolition Debris Landfill located off Clay Pit Road in Marshfield, Massachusetts (the Site). The Semi-Annual Monitoring Report documents activities conducted at the Site during the fall of 2023. A Site Locus Map and Site Plan are included as Figures 1 and 2 respectively.

1.0 Background

The Sylvester Ray Landfill is located on approximately 27-acres off the north side of Clay Pit Road. The landfill is situated in an industrial area and is abutted by industrial properties to the north, south, and west, with undeveloped land and some residents towards the east. The lateral limits of the buried solid waste at the landfill encompass approximately 20-acres of the Site. There is a buffer of non-solid waste around the perimeter of the Site. Based on information provided by the MassDEP Phase I Site Assessment Map, the Site is located within a medium yield Sole Source Aquifer and a Public Water Supply Zone II designation; therefor the groundwater classification for the Site is GW-1, and GW-3.

2.1 Groundwater Sampling

Groundwater purging, and sampling of the monitoring wells associated with the landfill was conducted during November 2023. The depths to groundwater are included in Table 1. Due to groundwater elevations in the wells and the inferred tight soil conditions (site is located on Clay Pit Road) the wells' purge volumes were reduced to 1.5- 2 well volumes per well. Following purging, samples from each well were field screened for the following parameters: conductivity, dissolved oxygen (DO), temperature, pH, and turbidity. The results of this field screening are included in Table 1. Groundwater samples were then collected from the monitoring wells into laboratory-

Design with community in mind

January 4, 2024 Page 2 of 3

supplied containers using a peristaltic pump and supplied polyethene tubing and placed on ice in a cooler. The samples were transferred under Chain-of-Custody protocols and submitted to Phoenix laboratory in Manchester, CT for analysis of the required parameters listed in Table 2. All samples for metals analyses were filtered and preserved in the lab.

The analytical results for the groundwater sampling are presented in Table 3. The results indicate that none of the analytes were detected above the Method 1 GW-1 or GW-3, Groundwater Standards.

Also shown on Table 3, the landfill indicator parameters were below the Maximum Contamination Level (MCL), the secondary MCLs, and the Massachusetts Contingency Plan (MCP) reportable concentrations for all samples except the following:

- Chloride in MW-1
- TDS in MW-1

The laboratory analytical reports are included in Attachment A.

2.2 Soil Gas Sampling

In November 2023, six (6) soil gas monitoring wells (labeled SG-A through SG-F) were field-screened as part of the semi-annual landfill soil gas sampling. The samples were field screened using a multi-gas meter for the following fixed gases: methane (total % and % LEL), carbon dioxide (%), oxygen (%), hydrogen sulfide in parts per million by volume (ppmv), and total volatile organic compounds (VOCs, in ppmv). Very low concentrations of methane were detected in all six soil gas monitoring wells. The results are presented in Table 4.

3.0 CONCLUSIONS

This is the eighteenth semi-annual monitoring conducted by Stantec. The compound 1, 4-Dioxane was not detected in groundwater from any of the monitoring wells; however, the detection limit for 1,4 dioxane is greater than the GW-1 standard and may be present. None of the other analytes included in the analytical methods were detected in the samples above the Method 1, GW-1 Groundwater Standards; however, two of the water chemistry groundwater samples did exceed the MCL as set by the US Environmental Protection Agency (EPA) and Massachusetts Department of Environmental Protection.

All six soil gas monitoring wells had very low concentrations of methane gas. Methane concentrations have varied over the eighteen sampling events at the Site.

If you have any questions or comments concerning this report, please contact the undersigned.

January 4, 2024 Page 3 of 3

Regards,

STANTEC CONSULTING SERVICES INC.

Varald Ederquist

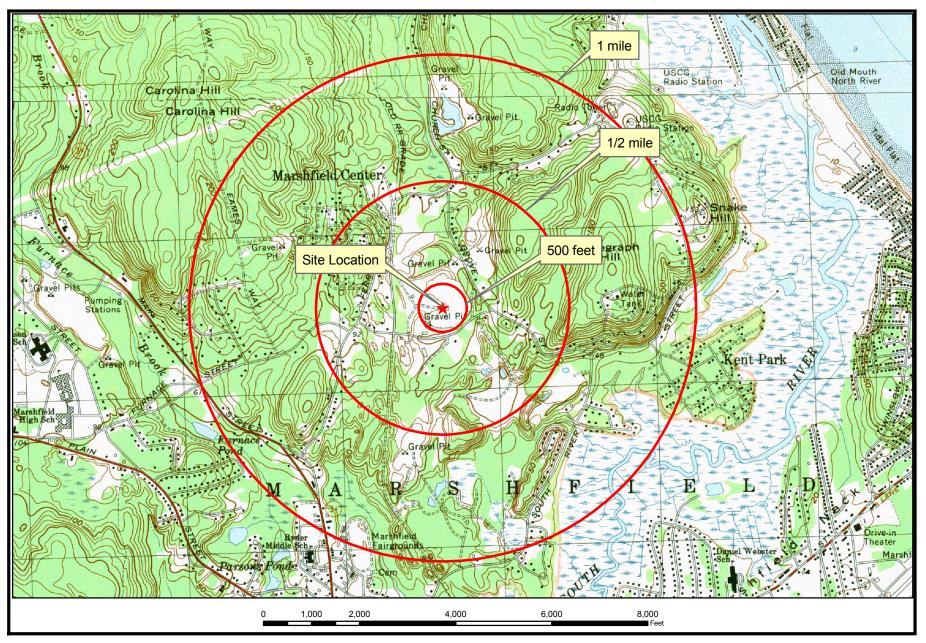
Donald P. Cederquist, PG, LSP Senior Technical Consultant

5 Dartmouth Drive Auburn, NH 03032 Phone: 603 413-7732

don.cederquist@stantec.com

Attachment

cc Jonathan Vairo


Luminace by Brookfield Renewable

200 Liberty St. 14th Floor New York, NY 10281

V:\1956\active\195601998\05_report_deliv\Monitoring reports\Fall 2023\Stantec Fall 2023 Final rpt (1).docx

FIGURES

Figure 1 Figure 2 Site Locus Map Site Plan

TABLES

Table 1	Field-Screening Parameters
Table 2	Analytical Parameters and Methods
Table 3	Analytes Detected in Groundwater
Table 4	Soil Gas Monitoring Results

Table 1 Field-Screening Parameters Sylvester Ray Landfill Marshfield, Massachusetts Measured 11/20/2023

Well ID	Depth to Water (ft)	рН	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (⁰ C)				
MW-A	31.13	5.9	2.405	12,000	7.88	7.2				
MW-1	35.34	6.2	2.706	500	4.85	7.2				
MW-3	34.37	6.6	2.989	3000	6.18	8.9				
MW-2	Destroyed									
MW-4	DRÝ									

Notes:

^{1.} Field parameters measured with a YSI instrument.

Table 2 Analytical Parameters and Methods Sylvester Ray Landfill Marshfield, Massachusetts

Parameter	Analytical Method
Volatile Organic Compounds (VOCs) + Acetone,	EDA Mathad 9960D
MEK, MIBK	EPA Method 8260B
Dissolved RCRA 8 Metals (Cu Fe Mn Zn)	EPA 200 Series
Chemical Oxygen Demand (COD)	SM-5220D
Alkalinity	SM2320B
Chloride	SM 4500CI B
Nitrates	300.0/9056
Total Dissolved Solids	EPA 160.1
Sulfates	EPA 375.4
Total Cyanide	9010/335.3

Table 3
Analytes Detected in Groundwater
Sylvester Ray Landfill
Marshfield, Massachusetts
Samples Collected 11/10/2023

	Federal	Massachusetts								
		Method 1 Standards				Sample ID				
Analytes	MCL	MCL	GW-1	GW-2	GW-3	MW-1	MW-2	MW-3	MW-4	MW-A
VOCs (via EPA Method 8260B, ug/L)			Varies	Varies	Varies					
1,4-Dioxane			0.03	6000	50000	ND(0.20)	D	ND(0.20)	D	ND(0.20)
Carbon Disulfide			NS	NS	NS	ND(1.0)	E	ND(1.0)	R	ND(1.0)
Acetone			6300	50000	50000	ND(10.0)	S	ND(10.0)	Υ	ND(10.0)
Methyl-tert-Butyl-Ether			0.07	5	NS	ND(1.0)	Т	ND(1.0)		ND(1.0)
Dissolved Metals (mg/L)							R			
Arsenic	0.01	0.01	0.01	NS	0.90	ND(0.004)	0	ND(0.004)		ND(0.004)
Barium	2.00	2.00	2	NS	50	0.019	Υ	0.039		0.027
Copper	1.0 ⁽¹⁾	1.0 ⁽¹⁾	NS	NS	NS	ND(0.020)	E	ND(0.020)		ND(0.020)
Cadmium	0.005 (1)	0.005 (1)	5	NS	4	ND(0.001)	D	ND(0.001)		ND(0.001)
Iron	0.3 (1)	0.3 (1)	NS	NS	NS	ND(0.100)		ND(0.100)		ND(0.100)
Lead	0.015 (¹⁾	0.015 ⁽¹⁾	0.02	NS	0.01	ND(0.002)		ND(0.002)		ND(0.002)
Manganese	0.05 (1)	0.05 (1)	NS	NS	NS	ND(0.050)		ND(0.050)		ND(0.050)
Selenium	0.05	0.05	0.05	NS	0.10	ND(0.011)		ND(0.011)		ND(0.011)
Zinc	5 ⁽¹⁾	5 ⁽¹⁾	5	NS	0.90	ND(0.050)		ND(0.050)		ND(0.050)
Water Chemistry (mg/L)										
Alkalinity			NS	NS	NS	60		72		51
Nitrate		10.00	NS	NS	NS	6.39		0.51		0.75
Chloride		250 (1)	NS	NS	NS	746		17.8		37.6
Sulfate		250 (1)	NS	NS	NS	59.9		17.5		19
COD			NS	NS	NS	25		66		14
Total Cyanide		0.20	0.20	NS	0.03	0.026		ND(0.010)		ND(0.010)
TDS		500 (1)	NS	NS	NS	1300		130		140

Notes:

Blank cells indicate analyte was not detected based upon the laboratory detection limits.

Bold - exceeds one or more Method 1 Groundwater Standard

MW-4 was dry at the time of the sample event. No sample collected.

ND(number)- Not Detected (Lab Reporting Limit)
"MCL" = Maximun Contamination Level

(1) = Secondary Maximun Contamination Level (2) = Action Level
Massachusetts Drinking Water Standards and Guidelines, Spring 2006 and EPA Drinking Water Regulations and Health Advisories, October 1996

Table 4 **Soil Gas Monitoring Results** Sylvester Ray Landfill Marshfield, Massachusetts Measured 11/10/2023

Well ID	Methane (% LEL / Total Methane%)	Carbon Dioxide (%)	Oxygen (%)	Hydrogen Sulfide (ppm)	VOCs (ppm)
SG-A	0.2 / 1%	0.1	21.2	0	0.0
SG-B	0.6 / 12%	0.3	21.0	0	0.0
SG-C	0.3 / 6%	0.1	21.4	0	0.0
SG-D	0.2 / 1%	0.1	21.0	0	0.0
SG-E	0.2 / 1%	0.1	21.1	0	0.0
SG-F	0.2 / 1%	0.1	20.9	0	0.0

Notes:

MADEP standard for Methane is 25% at the landfill boundary

Parameters measured with GEM 2000 VOC's measured with ionscience model Tiger PID

ATTACHMENT A

LABORATORY REPORTS

Friday, December 01, 2023

Attn: Mr David Tanguay Stantec 400 Crown Colony Drive/Suite 200 Quincy MA 02169

Project ID: SYLVESTER RAY L/F MARSHFIELD MA

SDG ID: GCP52066

Sample ID#s: CP52066 - CP52069

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

December 01, 2023

SDG I.D.: GCP52066

8260 Analysis:

1,2-Dibromoethane doesn't meet GW-1 criteria, this compound is analyzed by GC/FID to achieve this criteria.

8260 Analysis:

1,4-Dioxane doesn't meet GW-1 criteria, this compound is analyzed by 8270SIM to achieve this criteria.

Phoenix reporting levels may exceed those referenced in the CAM protocol. Please refer to criteria sheet for comparisons to requested MCP standards.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

December 01, 2023

SDG I.D.: GCP52066

Project ID: SYLVESTER RAY L/F MARSHFIELD MA

Client Id	Lab Id	Matrix
MW-A	CP52066	GROUND WATER
MW-1	CP52067	GROUND WATER
MW-3	CP52068	GROUND WATER
TRIP BLANK	CP52069	GROUND WATER

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 01, 2023

FOR: Attn: Mr David Tanguay

Stantec

400 Crown Colony Drive/Suite 200

Quincy MA 02169

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:11/20/239:00Location Code:STANTECMAReceived by:CP11/21/2314:50

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 195661998

Laboratory Data SDG ID: GCP52066

Phoenix ID: CP52066

Project ID: SYLVESTER RAY L/F MARSHFIELD MA

Client ID: MW-A

Parameter Silver (Dissolved) Arsenic (Dissolved) Barium (Dissolved) Cadmium (Dissolved)	Result< 0.001< 0.0040.027	PQL 0.001 0.004	Units mg/L	Dilution	Date/Time	Ву	Reference
Arsenic (Dissolved) Barium (Dissolved)	< 0.004		mg/L				
Barium (Dissolved)		0.004		1	11/29/23	TH	SW6010D
,	0.027	0.004	mg/L	1	11/29/23	TH	SW6010D
Cadmium (Dissolved)	0.021	0.002	mg/L	1	11/29/23	TH	SW6010D
	< 0.001	0.001	mg/L	1	11/29/23	TH	SW6010D
Chromium (Dissolved)	< 0.001	0.001	mg/L	1	11/29/23	TH	SW6010D
Mercury (Dissolved)	< 0.0002	0.0002	mg/L	1	11/27/23	GW	SW7470A
Lead (Dissolved)	< 0.002	0.002	mg/L	1	11/29/23	TH	SW6010D
Selenium (Dissolved)	< 0.011	0.011	mg/L	1	11/29/23	TH	SW6010D
Alkalinity-CaCO3	51	20.0	mg/L	1	11/22/23	иW/S/KD	ESM2320B-11
Chloride	37.6	5.0	mg/L	1	11/21/23	BS/EG	E300.0
C.O.D.	14	10	mg/L	1	11/28/23	NP	SM 5220D-11
Nitrate as Nitrogen	0.75	0.05	mg/L	1	11/21/23 19:56	BS/EG	E300.0
Sulfate	19.0	5.0	mg/L	1	11/21/23	BS/EG	E300.0
Total Cyanide	< 0.010	0.010	mg/L	1	11/22/23	CL/DK	SW9010C/SW9012B
Tot. Diss. Solids	140	10	mg/L	1	11/27/23	EC/NP	SM2540C-15
Filtration	Completed				11/21/23	AG	0.45um Filter
Mercury Dissolved Digestion	Completed				11/27/23	HL/AL	SW7470A
Dissolved Metals Preparation	Completed				11/21/23	AG	SW3005A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/22/23	МН	SW8260D
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,1-Dichloroethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,1-Dichloroethene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,1-Dichloropropene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D

Client ID: MW-A

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,2-Dibromoethane	ND	0.25	ug/L	1	11/22/23	MH	SW8260D
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,2-Dichloroethane	ND	0.60	ug/L	1	11/22/23	MH	SW8260D
1,2-Dichloropropane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,3-Dichloropropane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
2,2-Dichloropropane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
2-Chlorotoluene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
2-Hexanone	ND	5.0	ug/L	1	11/22/23	MH	SW8260D
2-Isopropyltoluene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
4-Chlorotoluene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/22/23	МН	SW8260D
Acetone	ND	25	ug/L	1	11/22/23	МН	SW8260D
Acrylonitrile	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Benzene	ND	0.70	ug/L	1	11/22/23	МН	SW8260D
Bromobenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Bromochloromethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Bromodichloromethane	ND	0.50	ug/L	1	11/22/23	МН	SW8260D
Bromoform	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Bromomethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	11/22/23	МН	SW8260D
Carbon tetrachloride	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Chlorobenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Chloroethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Chloroform	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Chloromethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/22/23	МН	SW8260D
Dibromochloromethane	ND	0.50	ug/L	1	11/22/23	МН	SW8260D
Dibromomethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Ethylbenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Hexachlorobutadiene	ND	0.40	ug/L	1	11/22/23	МН	SW8260D
Isopropylbenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
m&p-Xylene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Methyl ethyl ketone	ND	5.0	ug/L	1	11/22/23	MH	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Methylene chloride	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
-	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Naphthalene	ND	1.0		1	11/22/23	MH	SW8260D SW8260D
n-Butylbenzene	ND ND	1.0	ug/L		11/22/23		SW8260D SW8260D
n-Propylbenzene	ND ND		ug/L	1		MH	
o-Xylene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D

Project ID: SYLVESTER RAY L/F MARSHFIELD MA

Client ID: MW-A

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
p-Isopropyltoluene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
sec-Butylbenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Styrene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
tert-Butylbenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Tetrachloroethene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/22/23	MH	SW8260D
Toluene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Total Xylenes	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/22/23	MH	SW8260D
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/22/23	MH	SW8260D
Trichloroethene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Trichlorofluoromethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Vinyl chloride	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	11/22/23	MH	70 - 130 %
% Bromofluorobenzene	98		%	1	11/22/23	MH	70 - 130 %
% Dibromofluoromethane	97		%	1	11/22/23	MH	70 - 130 %
% Toluene-d8	95		%	1	11/22/23	МН	70 - 130 %
Oxygenates & Dioxane							
1,4-Dioxane	ND	40	ug/L	1	11/22/23	MH	SW8260D (OXY)
Diethyl ether	ND	1.0	ug/L	1	11/22/23	MH	SW8260D (OXY)
Di-isopropyl ether	ND	1.0	ug/L	1	11/22/23	MH	SW8260D (OXY)
Ethyl tert-butyl ether	ND	1.0	ug/L	1	11/22/23	MH	SW8260D (OXY)
tert-amyl methyl ether	ND	1.0	ug/L	1	11/22/23	МН	SW8260D (OXY)
1,4-dioxane							
1,4-dioxane	ND	0.20	ug/l	1	11/29/23	AW	SW8270ESIM
QA/QC Surrogates							
% 1,4-dioxane-d8	76		%	1	11/29/23	AW	70 - 130 %
Extraction for 1,4-Dioxane	Completed				11/28/23	G/G	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

8260 Analysis:

Phyllis Shiller, Laboratory Director

December 01, 2023

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: CP52066

^{1,4-}Dioxane doesn't meet GW-1 criteria, this compound is analyzed by 8270SIM to achieve this criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 01, 2023

FOR: Attn: Mr David Tanguay

Stantec

400 Crown Colony Drive/Suite 200

Quincy MA 02169

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:11/20/2310:00Location Code:STANTECMAReceived by:CP11/21/2314:50

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 195661998 Lab

<u>Laboratory Data</u> SDG ID: GCP52066

Phoenix ID: CP52067

Project ID: SYLVESTER RAY L/F MARSHFIELD MA

Client ID: MW-1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver (Dissolved)	< 0.001	0.001	mg/L	1	11/29/23	TH	SW6010D
Arsenic (Dissolved)	< 0.004	0.004	mg/L	1	11/29/23	TH	SW6010D
Barium (Dissolved)	0.019	0.002	mg/L	1	11/29/23	TH	SW6010D
Cadmium (Dissolved)	< 0.001	0.001	mg/L	1	11/29/23	TH	SW6010D
Chromium (Dissolved)	< 0.001	0.001	mg/L	1	11/29/23	TH	SW6010D
Mercury (Dissolved)	< 0.0002	0.0002	mg/L	1	11/22/23	GW	SW7470A
Lead (Dissolved)	< 0.002	0.002	mg/L	1	11/29/23	TH	SW6010D
Selenium (Dissolved)	< 0.011	0.011	mg/L	1	11/29/23	TH	SW6010D
Alkalinity-CaCO3	60	20.0	mg/L	1	11/22/23	viW/S/KD	ESM2320B-11
Chloride	746	125	mg/L	25	11/21/23	BS/EG	E300.0
C.O.D.	25	10	mg/L	1	11/28/23	NP	SM 5220D-11
Nitrate as Nitrogen	6.39	1.25	mg/L	25	11/21/23 22:24	BS/EG	E300.0
Sulfate	59.9	5.0	mg/L	1	11/21/23	BS/EG	E300.0
Total Cyanide	0.026	0.010	mg/L	1	11/29/23	C/M/G	SW9010C/SW9012B
Tot. Diss. Solids	1300	10	mg/L	1	11/27/23	EC/NP	SM2540C-15
Filtration	Completed				11/21/23	AG	0.45um Filter
Mercury Dissolved Digestion	Completed				11/22/23	AL/HL	SW7470A
Dissolved Metals Preparation	Completed				11/21/23	AG	SW3005A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/22/23	МН	SW8260D
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,1-Dichloroethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,1-Dichloroethene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,1-Dichloropropene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D

Client ID: MW-1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,2-Dibromoethane	ND	0.25	ug/L	1	11/22/23	MH	SW8260D
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,2-Dichloroethane	ND	0.60	ug/L	1	11/22/23	MH	SW8260D
1,2-Dichloropropane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,3-Dichloropropane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
2,2-Dichloropropane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
2-Chlorotoluene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
2-Hexanone	ND	5.0	ug/L	1	11/22/23	MH	SW8260D
2-Isopropyltoluene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
4-Chlorotoluene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/22/23	МН	SW8260D
Acetone	ND	25	ug/L	1	11/22/23	МН	SW8260D
Acrylonitrile	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Benzene	ND	0.70	ug/L	1	11/22/23	МН	SW8260D
Bromobenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Bromochloromethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Bromodichloromethane	ND	0.50	ug/L	1	11/22/23	МН	SW8260D
Bromoform	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Bromomethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	11/22/23	МН	SW8260D
Carbon tetrachloride	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Chlorobenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Chloroethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Chloroform	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Chloromethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/22/23	МН	SW8260D
Dibromochloromethane	ND	0.50	ug/L	1	11/22/23	МН	SW8260D
Dibromomethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Ethylbenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Hexachlorobutadiene	ND	0.40	ug/L	1	11/22/23	MH	SW8260D
Isopropylbenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
m&p-Xylene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
	ND	5.0	ug/L	1	11/22/23	MH	SW8260D
Methyl ethyl ketone Methyl t-butyl ether (MTRE)	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/22/23	МН	SW8260D SW8260D
Methylene chloride	ND	1.0			11/22/23	МН	SW8260D SW8260D
Naphthalene			ug/L	1			
n-Butylbenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
n-Propylbenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
o-Xylene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D

Project ID: SYLVESTER RAY L/F MARSHFIELD MA

Client ID: MW-1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
p-Isopropyltoluene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
sec-Butylbenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Styrene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
tert-Butylbenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Tetrachloroethene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/22/23	МН	SW8260D
Toluene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Total Xylenes	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/22/23	MH	SW8260D
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/22/23	MH	SW8260D
Trichloroethene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Trichlorofluoromethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Vinyl chloride	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	1	11/22/23	MH	70 - 130 %
% Bromofluorobenzene	97		%	1	11/22/23	MH	70 - 130 %
% Dibromofluoromethane	97		%	1	11/22/23	MH	70 - 130 %
% Toluene-d8	94		%	1	11/22/23	МН	70 - 130 %
Oxygenates & Dioxane							
1,4-Dioxane	ND	40	ug/L	1	11/22/23	МН	SW8260D (OXY)
Diethyl ether	ND	1.0	ug/L	1	11/22/23	МН	SW8260D (OXY)
Di-isopropyl ether	ND	1.0	ug/L	1	11/22/23	МН	SW8260D (OXY)
Ethyl tert-butyl ether	ND	1.0	ug/L	1	11/22/23	МН	SW8260D (OXY)
tert-amyl methyl ether	ND	1.0	ug/L	1	11/22/23	МН	SW8260D (OXY)
1,4-dioxane							
1,4-dioxane	ND	0.20	ug/l	1	11/29/23	AW	SW8270ESIM
QA/QC Surrogates							
% 1,4-dioxane-d8	72		%	1	11/29/23	AW	70 - 130 %
Extraction for 1,4-Dioxane	Completed				11/28/23	G/G	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

8260 Analysis:

Phyllis Shiller, Laboratory Director

December 01, 2023

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: CP52067

^{1,4-}Dioxane doesn't meet GW-1 criteria, this compound is analyzed by 8270SIM to achieve this criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 01, 2023

FOR: Attn: Mr David Tanguay

Stantec

400 Crown Colony Drive/Suite 200

Quincy MA 02169

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:11/20/2311:00Location Code:STANTECMAReceived by:CP11/21/2314:50

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 195661998 Labo

Laboratory Data

SDG ID: GCP52066
Phoenix ID: CP52068

Project ID: SYLVESTER RAY L/F MARSHFIELD MA

Client ID: MW-3

_		RL/				_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver (Dissolved)	< 0.001	0.001	mg/L	1	11/29/23	TH	SW6010D
Arsenic (Dissolved)	< 0.004	0.004	mg/L	1	11/29/23	TH	SW6010D
Barium (Dissolved)	0.039	0.002	mg/L	1	11/29/23	TH	SW6010D
Cadmium (Dissolved)	< 0.001	0.001	mg/L	1	11/29/23	TH	SW6010D
Chromium (Dissolved)	< 0.001	0.001	mg/L	1	11/29/23	TH	SW6010D
Mercury (Dissolved)	< 0.0002	0.0002	mg/L	1	11/22/23	GW	SW7470A
Lead (Dissolved)	< 0.002	0.002	mg/L	1	11/29/23	TH	SW6010D
Selenium (Dissolved)	< 0.011	0.011	mg/L	1	11/29/23	TH	SW6010D
Alkalinity-CaCO3	72	20.0	mg/L	1	11/22/23	vw/s/kd	ESM2320B-11
Chloride	17.8	5.0	mg/L	1	11/21/23	BS/EG	E300.0
C.O.D.	66	10	mg/L	1	11/28/23	NP	SM 5220D-11
Nitrate as Nitrogen	0.51	0.05	mg/L	1	11/21/23 20:03	BS/EG	E300.0
Sulfate	17.5	5.0	mg/L	1	11/21/23	BS/EG	E300.0
Total Cyanide	< 0.010	0.010	mg/L	1	11/29/23	C/M/G	SW9010C/SW9012B
Tot. Diss. Solids	130	10	mg/L	1	11/27/23	EC/NP	SM2540C-15
Filtration	Completed				11/21/23	AG	0.45um Filter
Mercury Dissolved Digestion	Completed				11/22/23	AL/HL	SW7470A
Dissolved Metals Preparation	Completed				11/21/23	AG	SW3005A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/23/23	MH	SW8260D
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,1-Dichloroethane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,1-Dichloroethene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,1-Dichloropropene	ND	1.0	ug/L	1	11/23/23	МН	SW8260D

Client ID: MW-3

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,2-Dibromoethane	ND	0.25	ug/L	1	11/23/23	MH	SW8260D
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,2-Dichloroethane	ND	0.60	ug/L	1	11/23/23	MH	SW8260D
1,2-Dichloropropane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,3-Dichloropropane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
2,2-Dichloropropane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
2-Chlorotoluene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
2-Hexanone	ND	5.0	ug/L	1	11/23/23	MH	SW8260D
2-Isopropyltoluene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
4-Chlorotoluene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/23/23	MH	SW8260D
Acetone	ND	25	ug/L	1	11/23/23	MH	SW8260D
Acrylonitrile	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
Benzene	ND	0.70	ug/L	1	11/23/23	МН	SW8260D
Bromobenzene	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
Bromochloromethane	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
Bromodichloromethane	ND	0.50	ug/L	1	11/23/23	МН	SW8260D
Bromoform	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
Bromomethane	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	11/23/23	МН	SW8260D
Carbon tetrachloride	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
Chlorobenzene	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
Chloroethane	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
Chloroform	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
Chloromethane	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/23/23	МН	SW8260D
Dibromochloromethane	ND	0.50	ug/L	1	11/23/23	МН	SW8260D
Dibromomethane	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
Ethylbenzene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
Hexachlorobutadiene	ND	0.40	ug/L	1	11/23/23	MH	SW8260D
Isopropylbenzene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
m&p-Xylene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
Methyl ethyl ketone	ND	5.0	ug/L	1	11/23/23	MH	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
Methylene chloride	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
-	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
Naphthalene	ND ND	1.0	ug/L ug/L	1	11/23/23	МН	SW8260D SW8260D
n-Butylbenzene n-Propylbenzene	ND ND	1.0	ug/L	1	11/23/23	МН	SW8260D SW8260D
	ND ND	1.0	ug/L	1	11/23/23	МН	SW8260D
o-Xylene	ND	1.0	ug/L	1	1 1/2J/2J	1411 1	O 110200D

Project ID: SYLVESTER RAY L/F MARSHFIELD MA

Client ID: MW-3

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
p-lsopropyltoluene	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
sec-Butylbenzene	ND	1.0	ug/L	1	11/23/23	МН	SW8260D
Styrene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
tert-Butylbenzene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
Tetrachloroethene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/23/23	MH	SW8260D
Toluene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
Total Xylenes	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/23/23	MH	SW8260D
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/23/23	MH	SW8260D
Trichloroethene	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
Trichlorofluoromethane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
Trichlorotrifluoroethane	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
Vinyl chloride	ND	1.0	ug/L	1	11/23/23	MH	SW8260D
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	11/23/23	MH	70 - 130 %
% Bromofluorobenzene	97		%	1	11/23/23	MH	70 - 130 %
% Dibromofluoromethane	96		%	1	11/23/23	MH	70 - 130 %
% Toluene-d8	94		%	1	11/23/23	МН	70 - 130 %
Oxygenates & Dioxane							
1,4-Dioxane	ND	40	ug/L	1	11/23/23	МН	SW8260D (OXY)
Diethyl ether	ND	1.0	ug/L	1	11/23/23	МН	SW8260D (OXY)
Di-isopropyl ether	ND	1.0	ug/L	1	11/23/23	МН	SW8260D (OXY)
Ethyl tert-butyl ether	ND	1.0	ug/L	1	11/23/23	MH	SW8260D (OXY)
tert-amyl methyl ether	ND	1.0	ug/L	1	11/23/23	МН	SW8260D (OXY)
1,4-dioxane							
1,4-dioxane	ND	0.20	ug/l	1	11/29/23	AW	SW8270ESIM
QA/QC Surrogates							
% 1,4-dioxane-d8	73		%	1	11/29/23	AW	70 - 130 %
Extraction for 1,4-Dioxane	Completed				11/28/23	G/G	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

8260 Analysis:

Phyllis Shiller, Laboratory Director

December 01, 2023

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: CP52068

^{1,4-}Dioxane doesn't meet GW-1 criteria, this compound is analyzed by 8270SIM to achieve this criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

December 01, 2023

FOR: Attn: Mr David Tanguay

Stantec

400 Crown Colony Drive/Suite 200

Quincy MA 02169

Matrix: GROUND WATER Collected by: 11/20/23

Location Code: STANTECMA Received by: CP 11/21/23 14:50

Rush Request: Standard Analyzed by: see "By" below

Phoenix ID: CP52069

Project ID: SYLVESTER RAY L/F MARSHFIELD MA

Client ID: TRIP BLANK

RL/

Parameter	Result PQL Units Dilution Date/Tim		Date/Time	Ву	Reference		
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,1,1-Trichloroethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	11/22/23	МН	SW8260D
1,1,2-Trichloroethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,1-Dichloroethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,1-Dichloroethene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,1-Dichloropropene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,2,3-Trichloropropane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,2-Dibromoethane	ND	0.25	ug/L	1	11/22/23	МН	SW8260D
1,2-Dichlorobenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,2-Dichloroethane	ND	0.60	ug/L	1	11/22/23	МН	SW8260D
1,2-Dichloropropane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,3-Dichlorobenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,3-Dichloropropane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
1,4-Dichlorobenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
2,2-Dichloropropane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
2-Chlorotoluene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
2-Hexanone	ND	5.0	ug/L	1	11/22/23	МН	SW8260D
2-Isopropyltoluene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
4-Chlorotoluene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
4-Methyl-2-pentanone	ND	5.0	ug/L	1	11/22/23	МН	SW8260D

Client ID: TRIP BLANK

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	11/22/23	МН	SW8260D
Acrylonitrile	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Benzene	ND	0.70	ug/L	1	11/22/23	MH	SW8260D
Bromobenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Bromochloromethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Bromodichloromethane	ND	0.50	ug/L	1	11/22/23	MH	SW8260D
Bromoform	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Bromomethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	11/22/23	MH	SW8260D
Carbon tetrachloride	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Chlorobenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Chloroethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Chloroform	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Chloromethane	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	11/22/23	МН	SW8260D
Dibromochloromethane	ND	0.50	ug/L	1	11/22/23	МН	SW8260D
Dibromomethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Dichlorodifluoromethane	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Ethylbenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Hexachlorobutadiene	ND	0.40	ug/L	1	11/22/23	МН	SW8260D
Isopropylbenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
m&p-Xylene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Methyl ethyl ketone	ND	5.0	ug/L	1	11/22/23	МН	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Methylene chloride	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Naphthalene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
n-Butylbenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
n-Propylbenzene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
o-Xylene	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
p-Isopropyltoluene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
sec-Butylbenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Styrene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
tert-Butylbenzene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Tetrachloroethene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	11/22/23	MH	SW8260D
Toluene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Total Xylenes	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	11/22/23	MH	SW8260D
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	11/22/23	MH	SW8260D
	ND	1.0	ug/L	1	11/22/23	MH	SW8260D
Trichloroethene Trichlorofluoromethane	ND ND	1.0	ug/L	1	11/22/23	МН	SW8260D
	ND	1.0	ug/L	1	11/22/23	МН	SW8260D
Trichlorotrifluoroethane	ND ND	1.0			11/22/23	МН	SW8260D SW8260D
Vinyl chloride	ND	1.0	ug/L	1	11/22/23	IVII	3440Z0UD
QA/QC Surrogates	00		0/	4	44/00/00	N 41 1	70 420.0/
% 1,2-dichlorobenzene-d4	99		%	1	11/22/23	MH	70 - 130 %
% Bromofluorobenzene	97 06		%	1	11/22/23	MH	70 - 130 %
% Dibromofluoromethane	96		%	1	11/22/23	МН	70 - 130 %

Phoenix I.D.: CP52069

Project ID: SYLVESTER RAY L/F MARSHFIELD MA

Client ID: TRIP BLANK

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	94		%	1	11/22/23	МН	70 - 130 %
Oxygenates & Dioxane							
1,4-Dioxane	ND	40	ug/L	1	11/22/23	МН	SW8260D (OXY)
Diethyl ether	ND	1.0	ug/L	1	11/22/23	MH	SW8260D (OXY)
Di-isopropyl ether	ND	1.0	ug/L	1	11/22/23	MH	SW8260D (OXY)
Ethyl tert-butyl ether	ND	1.0	ug/L	1	11/22/23	MH	SW8260D (OXY)
tert-amyl methyl ether	ND	1.0	ug/L	1	11/22/23	МН	SW8260D (OXY)

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

8260 Analysis:

1,4-Dioxane doesn't meet GW-1 criteria, this compound is analyzed by 8270SIM to achieve this criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

December 01, 2023

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: CP52069

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

December 01, 2023

QA/QC Data

SDG I.D.: GCP52066

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 707540 (mg/L), Q	QA/QC Batch 707540 (mg/L), QC Sample No: CP52066 (CP52066)												
Mercury (Dissolved) Comment:	BRL	0.0002	<0.0002	<0.0002	NC	97.8			99.2			75 - 125	30
Additional Mercury criteria: LCS ac	ceptanc	e range f	or waters	is 80-120	% and fo	or soils is	s 75-1259	%					
QA/QC Batch 707355 (mg/L), Q	C Sam	ole No: (CP52275	(CP520	67, CP!	52068)							
Mercury (Dissolved) Comment:	BRL	0.0002	<0.0002	<0.0002	NC	105			102			75 - 125	30
Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 75-125%													
QA/QC Batch 707270 (mg/L), Q	•	Ü											
ICP Metals - Dissolved	'			•	,	,		-,					
Arsenic	BRL	0.004	< 0.004	< 0.004	NC	90.2	93.3	3.4	92.8	92.2	0.6	80 - 120	20
Barium	BRL	0.002	0.638	0.636	0.30	95.1	98.1	3.1	99.3	99.2	0.1	80 - 120	20
Cadmium	BRL	0.001	< 0.001	< 0.001	NC	94.3	97.1	2.9	96.3	96.0	0.3	80 - 120	20
Chromium	BRL	0.001	0.001	0.001	NC	90.1	92.9	3.1	92.4	92.0	0.4	80 - 120	20
Lead	BRL	0.002	< 0.002	< 0.002	NC	91.6	94.8	3.4	104	104	0.0	80 - 120	20
Selenium	BRL	0.011	< 0.011	< 0.011	NC	86.7	90.1	3.8	88.8	88.9	0.1	80 - 120	20
Silver	BRL	0.001	< 0.001	< 0.001	NC	87.8	91.7	4.3	96.0	95.5	0.5	80 - 120	20
Comment:													
Additional: LCS acceptance range is 80-120% MS acceptance range 75-125%.													

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

December 01, 2023

QA/QC Data

SDG I.D.: GCP52066

% Sample Dup LCS **LCSD** LCS MS **MSD** MS Rec **RPD** Dup Blank **RPD RPD** Limits RΙ Result Result **RPD** % % Limits Parameter % % QA/QC Batch 707304A (mg/L), QC Sample No: CP51419 (CP52066) Total Cyanide BRL 0.010 99.7 111 90 - 110 30 m Comment: This batch does not include a duplicate. Additional soil criteria LCS acceptance range is 80-120% MS acceptance range 75-125%. QA/QC Batch 707337 (mg/L), QC Sample No: CP51690 (CP52067, CP52068) Total Cyanide 0.010 0.072 0.074 94.8 90 - 110 30 Comment: Additional soil criteria LCS acceptance range is 80-120% MS acceptance range 75-125%. QA/QC Batch 707400 (mg/L), QC Sample No: CP51884 (CP52066, CP52067, CP52068) Alkalinity-CaCO3 **BRL** 5.00 119 117 1.70 101 85 - 115 20 Comment: Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%. QA/QC Batch 707581 (mg/L), QC Sample No: CP52067 (CP52066, CP52067, CP52068) Tot. Diss. Solids BRL 10 1300 1300 0 95.0 85 - 115 20 Comment: Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%. QA/QC Batch 707590 (mg/L), QC Sample No: CP52273 (CP52066, CP52067, CP52068) BRL NC 98.2 98.3 C.O.D. 10 10 10 85 - 115 20 Comment: Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%. QA/QC Batch 707428 (mg/L), QC Sample No: CP51903 (CP52067, CP52068) 5.0 NC 99.0 107 Chloride BRI 18.9 19.4 90 - 110 20 Nitrate as Nitrogen BRL 0.05 16.8 16.8 0 96.0 95.1 90 - 110 20 Sulfate BRL 5.0 21.7 21.9 NC 102 105 90 - 110 20 QA/QC Batch 707412 (mg/L), QC Sample No: CP52066 (CP52066) BRL 5.0 98.3 111 Chloride 90 - 110 20 0.05 0.75 97.2 Nitrate as Nitrogen BRL 0.75 0 97.4 90 - 110 20 Sulfate 19.0 NC 102 103 90 - 110 20 QA/QC Batch 707429 (mg/L), QC Sample No: CP52774 (CP52067) 101 105 Chloride **BRL** 5.0 5.2 5.9 NC 90 - 110 20 Nitrate as Nitrogen BRL 0.05 0.05 < 0.05 NC 99.0 107 90 - 110 20 Sulfate BRL 5.0 19.2 19.4 NC 104 105 90 - 110 20

m = This parameter is outside laboratory MS/MSD specified recovery limits.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

December 01, 2023

QA/QC Data

SDG I.D.: GCP52066

Daramotor	Blank	Blk RI		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Parameter			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				/0	/0	KFD	LIIIIIIS	LIIIIII
QA/QC Batch 707754 (ug/l), Q	•	e No: CP51	1628 (CP52066, CP	52067, C	P52068)					
1,4dioxane - Ground Wa	<u>ter</u>										
1,4-dioxane	ND	0.20		109	96	12.7	84			70 - 130	20
% 1,4-dioxane-d8	80	%		75	74	1.3	72			70 - 130	20
QA/QC Batch 707593 (ug/L), C	2C Sampl	e No: CP5	2069 (CP52066, CI	P52067, (CP5206	8, CP52	2069)				
Volatiles - Ground Water	- -										
1,1,1,2-Tetrachloroethane	ND	1.0		99	105	5.9				70 - 130	20
1,1,1-Trichloroethane	ND	1.0		102	103	1.0				70 - 130	20
1,1,2,2-Tetrachloroethane	ND	0.50		107	113	5.5				70 - 130	20
1,1,2-Trichloroethane	ND	1.0		101	110	8.5				70 - 130	20
1,1-Dichloroethane	ND	1.0		96	101	5.1				70 - 130	20
1,1-Dichloroethene	ND	1.0		99	98	1.0				70 - 130	20
1,1-Dichloropropene	ND	1.0		100	101	1.0				70 - 130	20
1,2,3-Trichlorobenzene	ND	1.0		98	106	7.8				70 - 130	20
1,2,3-Trichloropropane	ND	1.0		107	110	2.8				70 - 130	20
1,2,4-Trichlorobenzene	ND	1.0		103	109	5.7				70 - 130	20
1,2,4-Trimethylbenzene	ND	1.0		112	111	0.9				70 - 130	20
1,2-Dibromo-3-chloropropane	ND	1.0		100	108	7.7				70 - 130	20
1,2-Dibromoethane	ND	1.0		105	113	7.3				70 - 130	20
1,2-Dichlorobenzene	ND	1.0		110	114	3.6				70 - 130	20
1,2-Dichloroethane	ND	1.0		100	107	6.8				70 - 130	20
1,2-Dichloropropane	ND	1.0		102	110	7.5				70 - 130	20
1,3,5-Trimethylbenzene	ND	1.0		110	109	0.9				70 - 130	20
1,3-Dichlorobenzene	ND	1.0		109	112	2.7				70 - 130	20
1,3-Dichloropropane	ND	1.0		108	114	5.4				70 - 130	20
1,4-Dichlorobenzene	ND	1.0		110	112	1.8				70 - 130	20
1,4-dioxane	ND	100 1.0		107 92	111 88	3.7 4.4				40 - 160	20
2,2-Dichloropropane 2-Chlorotoluene	ND ND	1.0		92 112	00 110	1.8				70 - 130 70 - 130	20 20
2-Hexanone	ND ND	5.0		95	105	10.0				40 - 160	20
2-Isopropyltoluene	ND	1.0		113	113	0.0				70 - 130	20
4-Chlorotoluene	ND	1.0		111	110	0.9				70 - 130	20
4-Methyl-2-pentanone	ND	5.0		94	106	12.0				40 - 160	20
Acetone	ND	5.0		73	78	6.6				40 - 160	20
Acrylonitrile	ND	5.0		84	98	15.4				70 - 130	20
Benzene	ND	0.70		103	108	4.7				70 - 130	20
Bromobenzene	ND	1.0		112	114	1.8				70 - 130	20
Bromochloromethane	ND	1.0		92	102	10.3				70 - 130	20
Bromodichloromethane	ND	0.50		97	104	7.0				70 - 130	20
Bromoform	ND	1.0		90	98	8.5				70 - 130	20
Bromomethane	ND	1.0		83	88	5.8				40 - 160	20
Carbon Disulfide	ND	1.0		92	94	2.2				70 - 130	20
Carbon tetrachloride	ND	1.0		88	90	2.2				70 - 130	20

QA/QC Data

SDG I.D.: GCP52066

Parameter	Blk Blank RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Chlorobenzene	ND 1.0	108	111	2.7				70 - 130	20
Chloroethane	ND 1.0	100	101	1.0				70 - 130	20
Chloroform	ND 1.0	105	103	1.9				70 - 130	20
Chloromethane	ND 1.0	96	100	4.1				40 - 160	20
cis-1,2-Dichloroethene	ND 1.0	97	102	5.0				70 - 130	20
cis-1,3-Dichloropropene	ND 0.40	98	105	6.9				70 - 130	20
Dibromochloromethane	ND 0.50	101	108	6.7				70 - 130	20
Dibromomethane	ND 1.0	99	109	9.6				70 - 130	20
Dichlorodifluoromethane	ND 1.0	84	84	0.0				40 - 160	20
Di-isopropyl ether	ND 1.0	95	104	9.0				70 - 130	20
Ethyl ether	ND 1.0	97	108	10.7				70 - 130	20
Ethyl tert-butyl ether	ND 1.0	94	104	10.1				70 - 130	20
Ethylbenzene	ND 1.0	105	107	1.9				70 - 130	20
Hexachlorobutadiene	ND 0.40	100	102	2.0				70 - 130	20
Isopropylbenzene	ND 1.0	110	109	0.9				70 - 130	20
m&p-Xylene	ND 1.0	105	105	0.0				70 - 130	20
Methyl ethyl ketone	ND 5.0	87	103	16.8				40 - 160	20
Methyl t-butyl ether (MTBE)	ND 1.0	94	106	12.0				70 - 130	20
Methylene chloride	ND 1.0	93	99	6.3				70 - 130	20
Naphthalene	ND 1.0	111	115	3.5				70 - 130	20
n-Butylbenzene	ND 1.0	109	109	0.0				70 - 130	20
n-Propylbenzene	ND 1.0	110	108	1.8				70 - 130	20
o-Xylene	ND 1.0	106	108	1.9				70 - 130	20
p-Isopropyltoluene	ND 1.0	108	108	0.0				70 - 130	20
sec-Butylbenzene	ND 1.0	107	108	0.9				70 - 130	20
Styrene	ND 1.0	105	110	4.7				70 - 130	20
tert-amyl methyl ether	ND 1.0	97	109	11.7				70 - 130	20
tert-Butylbenzene	ND 1.0	109	107	1.9				70 - 130	20
Tetrachloroethene	ND 1.0	99	101	2.0				70 - 130	20
Tetrahydrofuran (THF)	ND 2.5	92	96	4.3				70 - 130	20
Toluene	ND 1.0	104	108	3.8				70 - 130	20
trans-1,2-Dichloroethene	ND 1.0	98	100	2.0				70 - 130	20
trans-1,3-Dichloropropene	ND 0.40	92	101	9.3				70 - 130	20
trans-1,4-dichloro-2-butene	ND 5.0	84	90	6.9				70 - 130	20
Trichloroethene	ND 1.0	102	105	2.9				70 - 130	20
Trichlorofluoromethane	ND 1.0	96	96	0.0				70 - 130	20
Trichlorotrifluoroethane	ND 1.0	90	90	0.0				70 - 130	20
Vinyl chloride	ND 1.0	97	97	0.0				70 - 130	20
% 1,2-dichlorobenzene-d4	102 %	100	102	2.0				70 - 130	20
% Bromofluorobenzene	98 %	99	100	1.0				70 - 130	20
% Dibromofluoromethane	93 %	93	94	1.1				70 - 130	20
% Toluene-d8 Comment:	95 %	101	100	1.0				70 - 130	20

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%. The RPD criteria for the LCS/LCSD is 20%,

The MS/MSD RPD criteria is listed above.

QA/QC Data

SDG I.D.: GCP52066

% % RPD Blk LCS LCSD LCS MSMSD MS Rec Blank RL % % RPD % % RPD Limits Limits Parameter

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

December 01, 2023

Friday, December 01, 2023 Criteria: MA: CAM, GW1

Sample Criteria Exceedances Report GCP52066 - STANTECMA

State: MA

State:	MA						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CP52066	\$8260GWR	Acetone	MA / CAM Protocol / VOA AQ RL	ND	25		10	ug/L
CP52066	\$8260GWR	Carbon Disulfide	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L
CP52066	\$8260GWR	Tetrahydrofuran (THF)	MA / CAM Protocol / VOA AQ RL	ND	2.5		2	ug/L
CP52066	\$8260GWR	trans-1,4-dichloro-2-butene	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L
CP52066	\$8260GWR	1,2-Dibromoethane	MA / CMR 310.40.1600 / GW-1 (mg/l)	ND	0.25	0.02	0.02	ug/L
CP52066	\$8260GWR	1,2-Dibromoethane	MA / GROUNDWATER STANDARDS / GW-1	ND	0.25	0.02	0.02	ug/L
CP52067	\$8260GWR	trans-1,4-dichloro-2-butene	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L
CP52067	\$8260GWR	Tetrahydrofuran (THF)	MA / CAM Protocol / VOA AQ RL	ND	2.5		2	ug/L
CP52067	\$8260GWR	Carbon Disulfide	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L
CP52067	\$8260GWR	Acetone	MA / CAM Protocol / VOA AQ RL	ND	25		10	ug/L
CP52067	\$8260GWR	1,2-Dibromoethane	MA / CMR 310.40.1600 / GW-1 (mg/l)	ND	0.25	0.02	0.02	ug/L
CP52067	\$8260GWR	1,2-Dibromoethane	MA / GROUNDWATER STANDARDS / GW-1	ND	0.25	0.02	0.02	ug/L
CP52068	\$8260GWR	Acetone	MA / CAM Protocol / VOA AQ RL	ND	25		10	ug/L
CP52068	\$8260GWR	Carbon Disulfide	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L
CP52068	\$8260GWR	trans-1,4-dichloro-2-butene	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L
CP52068	\$8260GWR	Tetrahydrofuran (THF)	MA / CAM Protocol / VOA AQ RL	ND	2.5		2	ug/L
CP52068	\$8260GWR	1,2-Dibromoethane	MA / CMR 310.40.1600 / GW-1 (mg/l)	ND	0.25	0.02	0.02	ug/L
CP52068	\$8260GWR	1,2-Dibromoethane	MA / GROUNDWATER STANDARDS / GW-1	ND	0.25	0.02	0.02	ug/L
CP52069	\$8260GWR	Acetone	MA / CAM Protocol / VOA AQ RL	ND	25		10	ug/L
CP52069	\$8260GWR	Carbon Disulfide	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L
CP52069	\$8260GWR	Tetrahydrofuran (THF)	MA / CAM Protocol / VOA AQ RL	ND	2.5		2	ug/L
CP52069	\$8260GWR	trans-1,4-dichloro-2-butene	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L
CP52069	\$8260GWR	1,2-Dibromoethane	MA / CMR 310.40.1600 / GW-1 (mg/l)	ND	0.25	0.02	0.02	ug/L
CP52069	\$8260GWR	1,2-Dibromoethane	MA / GROUNDWATER STANDARDS / GW-1	ND	0.25	0.02	0.02	ug/L
CP52069	\$MCPADD-W	M 1,4-Dioxane	MA / CMR 310.40.1600 / GW-1 (mg/l)	ND	40	0.3	0.3	ug/L
CP52069	\$MCPADD-W	M 1,4-Dioxane	MA / GROUNDWATER STANDARDS / GW-1	ND	40	0.3	0.3	ug/L

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

MassDEP Analytical Protocol Certification Form												
Labo	ratory Na	ame: Phoe	nix En	vironmental	Labora	atories, Inc. I	Proje	ct #:				
Proje	ct Locat	ion: SYLV	'ESTE	R RAY L/F I	MARSH	HFIELD MA	RTN:					
		les certificati 67, CP52068,			data set	: [list Laborato	ry San	nple ID Number((s)]			
01 020												
Matrices: ✓ Groundwater/Surface Water ☐ Soil/Sediment ☐ Drinking Water ☐ Air ☐ Other:												
	CAM Protocol (check all that apply below)											
8260 V CAM II		7470/7471 H CAM III B	g •	MassDEP VP CAM IV A	Н	8081 Pesticides CAM V B		7196 Hex Cr CAM VI B		MassD CAM IX	EP APH (A 📗	
	270 SVOC 7010 Metals											
6010 Metals CAM III A CAM III D CAM V A CAM V A CAM V A CAM V I A 6860 Perchlorate CAM VIII B CAM V I A												
	Affirmat	ive respons	es to q	uestions A t	hrough	F are required	d for '	Presumptive	Certai	nty" s	tatus	
Α	Chain-of-Glaboratory	Custody, pro v, and prepar	perly p ed/ana	reserved (inc lyzed with me	luding to	nt with those de emperature*) in olding times? (*	the fi	eld or narrative)	✓ ,	Yes	□ No	
В		analytical m CAM protoco			ociated	QC requiremer	its spe	ecified in the	✓ ,	Yes	□No	
O		CAM protoco				l response action tified performa			✓ ,	Yes	□No	
D	CAM VII A		ssuran	e and Qualit		orting requirem of Guidelines fo			✓ ,	Yes	□ No	
Ш		t modification				method conduction method(s) for				Yes	□No	
		,	ethods	only: Was the	e compl	ete analyte list	repor	ted for each		Yes	□ No	
F	conforma		ed and	evaluated in		nance standard itory narrative (ling all "No"	•	Yes	□No	
	Res	oonses to q	uestio	ns G, H and	l below	is required for	r "Pre	sumptive Cer	tainty'	statu	s	
G		reporting lim		r below all C	AM repo	orting limits spe	cified	in the		Yes	✓ No	
						status may not 1056(2)(k) and			data u	sability	and	
Н	See Secti	on: IC Narra	tion .			he CAM protoc				Yes	✓ No	
l	Were resu protocol(s	3)?		•		t specified in th				Yes	✓ No	
		d, attest unde	r the pa	ains and pena	Ities of p	essed in an attac perjury that, bas	ed up	on my personal	inqui			
responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.												
						Da	ate: F	riday, Decem	nber 0	1, 202	23	
Authorized Printed Name: Ethan Lee												
Sign	Signature: Printed Name: Etnan Lee Position: Project Manager											

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

December 01, 2023 SDG I.D.: GCP52066

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 MCP list.

8260 Analysis:

1,2-Dibromoethane doesn't meet GW-1 criteria, this compound is analyzed by GC/FID to achieve this criteria.

8260 Analysis:

1,4-Dioxane doesn't meet GW-1 criteria, this compound is analyzed by 8270SIM to achieve this criteria.

Phoenix reporting levels may exceed those referenced in the CAM protocol. Please refer to criteria sheet for comparisons to requested MCP standards.

522 - DIOXANE

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM34 11/29/23-1

Adam Werner, Chemist 11/29/23

CP52066 (1X), CP52067 (1X), CP52068 (1X)

Initial Calibration Evaluation (CHEM34/DIOX_1010):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM34/1129_04-DIOX_1010) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 707754 (CP51628)

CP52066, CP52067, CP52068

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

December 01, 2023 SDG I.D.: GCP52066

ICP Metals Narration

BLUE 11/29/23 13:26

Tina Hall. Chemist 11/29/23

CP52066, CP52067, CP52068

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

Cyanide Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 11/22/23-1

Catherine Lundigan, Dan Kinney, Chemist 11/22/23

CP52066

The samples were distilled in accordance with the method.

The initial calibration met criteria.

The calibration check standards (ICV,CCV) were within 15% of true value and were analyzed at a frequencey of one per ten samples.

The continuing calibration blanks (ICB,CCB) had concentrations less than the reporting level.

The method blank, laboratory control sample (LCS), and matrix spike were distilled with the samples.

LACHAT 11/29/23-1

Dan Kinney, Greg Danielewski, Chemist 11/29/23

CP52067, CP52068

The samples were distilled in accordance with the method.

The initial calibration met criteria.

The calibration check standards (ICV,CCV) were within 15% of true value and were analyzed at a frequencey of one per ten samples.

The continuing calibration blanks (ICB,CCB) had concentrations less than the reporting level.

The method blank, laboratory control sample (LCS), and matrix spike were distilled with the samples.

QC (Batch Specific):

Batch 707304A (CP51419)

CP52066

All LCS recoveries were within 90 - 110 with the following exceptions: None.

This batch does not include a duplicate.

Additional soil criteria LCS acceptance range is 80-120% MS acceptance range 75-125%.

Batch 707337 (CP51690)

CP52067, CP52068

All LCS recoveries were within 90 - 110 with the following exceptions: None.

Additional soil criteria LCS acceptance range is 80-120% MS acceptance range 75-125%.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

December 01, 2023 SDG I.D.: GCP52066

Cyanide Narration

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Wet Chemistry Analysis

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

HACH DR 5000 11/28/23-1

Nicholas Pappas, Chemist 11/28/23

CP52066, CP52067, CP52068

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 707400 (CP51884)

CP52066, CP52067, CP52068

All LCS recoveries were within 85 - 115 with the following exceptions: None. Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

Batch 707581 (CP52067)

CP52066, CP52067, CP52068

All LCS recoveries were within 85 - 115 with the following exceptions: None. Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

Batch 707590 (CP52273)

CP52066, CP52067, CP52068

All LCS recoveries were within 85 - 115 with the following exceptions: None. Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 11/22/23 22:50

Grace White, Chemist 11/22/23

CP52067, CP52068

The method preparation blank, ICB, and CCBs contain all of the acids and reagents as the samples.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

December 01, 2023 SDG I.D.: GCP52066

Mercury Narration

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

MERLIN 11/27/23 10:57

Grace White, Chemist 11/27/23

CP52066

The method preparation blank, ICB, and CCBs contain all of the acids and reagents as the samples.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 707355 (CP52275)

CP52067, CP52068

All LCS recoveries were within 75 - 125 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 75-125%

Batch 707540 (CP52066)

CP52066

All LCS recoveries were within 75 - 125 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 75-125%

IC

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? No.

QC Batch 707412 (Samples: CP52066): -----

The MS and/or the MSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (Chloride)

Instrument:

<u>IC 11/21/23-1</u> Brian Sheriden, Eric Geyer, Chemist 11/21/23

CP52066

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

<u>IC 11/21/23-2</u> Brian Sheriden, Eric Geyer, Chemist 11/21/23

CP52067, CP52068

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

December 01, 2023 SDG I.D.: GCP52066

IC

QC (Batch Specific):

Batch 707412 (CP52066)

CP52066

All LCS recoveries were within 90 - 110 with the following exceptions: None.

Batch 707428 (CP51903)

CP52067, CP52068

All LCS recoveries were within 90 - 110 with the following exceptions: None.

Batch 707429 (CP52774)

CP52067

All LCS recoveries were within 90 - 110 with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

LACHAT

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

IC 11/21/23-1

Brian Sheriden, Eric Geyer, Chemist 11/21/23

CP52066

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

VOA Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM17 11/22/23-2

Michael Hahn, Chemist 11/22/23

CP52066 (1X), CP52067 (1X), CP52068 (1X), CP52069 (1X)

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments.

EPA method 8260D Table 4 supports this approach.

Initial Calibration Evaluation (CHEM17/VT-111623):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone 22% (20%)

The following compounds did not meet Table 4 recommended minimum response factors: 1,1,2-Trichloroethane 0.136 (0.2), 1,2-Dibromoethane 0.145 (0.2), Acrylonitrile 0.033 (0.05), Bromoform 0.084 (0.1), Dibromochloromethane 0.184 (0.2),

Tetrahydrofuran (THF) 0.029 (0.05), trans-1,3-Dichloropropene 0.281 (0.3)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

December 01, 2023 SDG I.D.: GCP52066

VOA Narration

The following compounds did not meet the minimum response factor of 0.05: 1,2-Dibromo-3-chloropropane 0.035 (0.05), Acetone 0.036 (0.05), Acrylonitrile 0.033 (0.05), Methyl ethyl ketone 0.048 (0.05), Tetrahydrofuran (THF) 0.029 (0.05)

Continuing Calibration Verification (CHEM17/1122_30-VT-111623) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

95% of target compounds met criteria.

The following compounds did not meet % deviation criteria: Acetone 22%L (20%), Bromomethane 24%L (20%),

Dichlorodifluoromethane 36%L (20%), Naphthalene 29%H (20%)

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: 1,1,2-Trichloroethane 0.137 (0.2), 1,2-

Dibromoethane 0.151 (0.2), Acrylonitrile 0.030 (0.05), Bromoform 0.076 (0.1), Dibromochloromethane 0.183 (0.2),

Tetrahydrofuran (THF) 0.026 (0.05), trans-1,3-Dichloropropene 0.260 (0.3)

The following compounds did not meet the minimum MCP response factor of 0.05: 1,1,2-Trichloroethane 0.136 (0.2), 1,2-

Dibromoethane 0.145 (0.2), Acrylonitrile 0.033 (0.05), Bromoform 0.084 (0.1), Dibromochloromethane 0.184 (0.2),

Tetrahydrofuran (THF) 0.029 (0.05), trans-1,3-Dichloropropene 0.281 (0.3)

QC (Batch Specific):

Batch 707593 (CP52069) CHEM17 11/22/2023-2

CP52066(1X), CP52067(1X), CP52068(1X), CP52069(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%.

The RPD criteria for the LCS/LCSD is 20%.

The MS/MSD RPD criteria is listed above.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Coolant: IPK (COCE) No COOLANT IPK (COCE) NO COOLANT CONTACT OPTIONS: Claved, The Contact Options: Project P.O: 1/5 SC 1/5/5 This section MUST be completed with Bottle Quantities.	The state of the s	M-1
Cooling Te		tion RCS-2 / RCGW-1 RCS-2 / RCGW-2
	Contraction of the state of the	RCP Cert MA MCP Certification GWPC GW-2 RC GW-3 GW GW GW GW GW GW GW G
ODY RECORD Manchester, CT 06040 Fax (860) 645-0823 445-1102 フタレック アルンピック フィル・ファル・		CT RCP Cert GWPC SWPC GAPMC GAPMC RES DEC RES DEC I/C DEC State where se
CHAIN OF CUSTODY RECORD Turnpike, P.O. Box 370, Manchester, CT 0604/ na@phoenixlabs.com Fax (860) 645-0823 ent Services (860) 645-1102 jject:		RES DEC
	OR HOLLING TO SHOW THE SHOW TH	Time: 1/23 4 : 5 <
Email: makr Email: makr CI Dr Pr Pr Pr Pr Ou	Peld OO OO	Date:
Colour	Sample Date Matrix Sampled (1.0) 11-20-23 (2.4) 11-20-23 (2.4) 11-20-23 (2.4) 11-20-23 (2.4)	S CUSARGA das such in
HWK Street Inc. STACIEC 300 Grow	Sampler's Sample - Information - Identification Signature Signature Matrix Code: DW=Drinking Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid X = Other) Customer Sample Sample Date Till SAMPLE # Offer SAMPLE # Outloomer Sample Sam	Relinguished by Comments, Special Requirements or Regulations: ALTEL DISS MITAL PEY THORE CALL WITH DONE, CHEMAS/MSD are considered site samples and will be billed as such in accordance with the prices guoted.
Environmental Customer: Address:	Sampler's Signature Matrix Code: DW-Drinking Water RW=Raw Water SE= B-Bulk L=Liquid X = SAMPLE # SAMPLE # SAMPLE #	Comments, Special Requirements FILE DISS ME PEY PACHE CALL "MS/MSD are considered site samp accordance with the prices quoted.

anoesdoo

587 East Middle Turnpike
Manchester, CT 06040
Please email Krystal Houle with any questions
khoule@phoenixlabs.com Phoenix Environmental Laboratories, Inc.

Container List

Sylvester Ray Project: LF	Contact: Dave Tanguay	Deliver By: 11.20.23		Analysis	Being	tive Requested	Chloride, TDS, NO3, S04	Alkalinity (no headspace)	Cyanide	COD	Dissolved RCRA 8 Metals +4 (lab to filter)	1, 4 Dioxane Low Level 8270	VOC
			i.			Preservative	AS IS	AS IS	NAOH	H2S04	AS IS	NAHS04	HCL
- Residence			Ground Water / Surface Water			Container	500ml Plastic	120ml Plastic	250ml Plastic	250ml Plastic	250ml Plastic	8oz Amber Bottle	40ml Vials
	nit Court	am, MA	Gro			Total	4	4	4	4	4	4	12
Stantec	21 Weonit	21 Weonil Raynhar	Your	Requested	Sets	4	4	4	4	4	4	4	
Company:				Phoenix	Requires	# Per Set	_	_	-	~	-	-	က

Also Included: 1 Chain, Labels

1 Cooler VOA Bags 2 HCL Vials with Reagent Water Sealed = Trip Blank